6,832 research outputs found

    A Survey of Irradiated Pillars, Globules, and Jets in the Carina Nebul

    Get PDF
    We present wide-field, deep narrowband H2_2, Brγ\gamma, Hα\alpha, [S II], [O III], and broadband I and K-band images of the Carina star formation region. The new images provide a large-scale overview of all the H2_2 and Brγ\gamma emission present in over a square degree centered on this signature star forming complex. By comparing these images with archival HST and Spitzer images we observe how intense UV radiation from O and B stars affects star formation in molecular clouds. We use the images to locate new candidate outflows and identify the principal shock waves and irradiated interfaces within dozens of distinct areas of star-forming activity. Shocked molecular gas in jets traces the parts of the flow that are most shielded from the intense UV radiation. Combining the H2_2 and optical images gives a more complete view of the jets, which are sometimes only visible in H2_2. The Carina region hosts several compact young clusters, and the gas within these clusters is affected by radiation from both the cluster stars and the massive stars nearby. The Carina Nebula is ideal for studying the physics of young H II regions and PDR's, as it contains multiple examples of walls and irradiated pillars at various stages of development. Some of the pillars have detached from their host molecular clouds to form proplyds. Fluorescent H2_2 outlines the interfaces between the ionized and molecular gas, and after removing continuum, we detect spatial offsets between the Brγ\gamma and H2_2 emission along the irradiated interfaces. These spatial offsets can be used to test current models of PDRs once synthetic maps of these lines become available.Comment: Accepted in the Astronomical Journa

    A method for the estimation of p-mode parameters from averaged solar oscillation power spectra

    Full text link
    A new fitting methodology is presented which is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from mm-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the "Windowed, MuLTiple-Peak, averaged spectrum", or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run using weights from a leakage matrix that takes into account both observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method that employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure which is based upon 6,366 modes that we have computed using the WMLTP method on the 66-day long 2010 SOHO/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion we developed a new procedure for the identification and correction of outliers in a frequency data set. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model~S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle~24 during mid-2010

    Deuteron Momentum Distribution in KD2HPO4

    Full text link
    The momentum distribution in KD2PO4(DKDP) has been measured using neutron Compton scattering above and below the weakly first order paraelectric-ferroelectric phase transition(T=229K). There is very litte difference between the two distributions, and no sign of the coherence over two locations for the proton observed in the paraelectric phase, as in KH2PO4(KDP). We conclude that the tunnel splitting must be much less than 20mev. The width of the distribution indicates that the effective potential for DKDP is significantly softer than that for KDP. As electronic structure calculations indicate that the stiffness of the potential increases with the size of the coherent region locally undergoing soft mode fluctuations, we conclude that there is a mass dependent quantum coherence length in both systems.Comment: 6 pages 5 figure

    Releasing multiply-imputed synthetic data generated in two stages to protect confidentiality

    Full text link
    Eine Methode, um die Vertraulichkeit von Daten, die in statistischen Ämtern erhobenen werden, zu gewährleisten, ist das Ersetzen vertraulicher Werte durch synthetische Daten, die mittels multipler Imputation generiert werden. Es wird ein zweistufiges Verfahren zur Generierung der synthetischen Daten vorgestellt, das eine unterschiedliche Anzahl von Imputationen für unterschiedliche Variablen ermöglicht. Die Vorteile eines zweistufigen Verfahren liegen in der Reduzierung der Laufzeit bei der Berechnung, in der Verringerung des Risikos der Deanonymisierung, und in der Erhöhung der inferentiellen Genauigkeit. Es wird beschrieben, wie das zweistufige Verfahren bei der Generierung eines Public-Use-Files des IAB-Betriebpanels zur Anwendung kommt. (IAB)"To protect the cofidentiality of survey respondents' identities and sensitive attributes, statistical agencies can release data in which cofidential values are replaced with multiple imputations. These are called synthetic data. We propose a two-stage approach to generating synthetic data that enables agencies to release different numbers of imputations for different variables. Generation in two stages can reduce computational burdens, decrease disclosure risk, and increase inferential accuracy relative to generation in one stage. We present methods for obtaining inferences from such data. We describe the application of two stage synthesis to creating a public use file for a German business database." (author's abstract

    Nuclear-structure studies of exotic nuclei with MINIBALL

    Get PDF
    High-resolution γ-ray spectroscopy has been established at ISOLDE for nuclear-structure and nuclear-reaction studies with reaccelerated radioactive ion beams provided by the REX-ISOLDE facility. The MINIBALL spectrometer comprises 24 six-fold segmented, encapsulated high-purity germanium crystals. It was specially designed for highest γ-ray detection efficiency which is advantageous for low-intensity radioactive ion beams. The MINIBALL array has been used in numerous Coulomb-excitation and transfer-reaction experiments with exotic ion beams of energies up to 3 MeV A-1. The physics case covers a wide range of topics which are addressed with beams ranging from neutron-rich magnesium isotopes up to heavy radium isotopes. In the future the HIE-ISOLDE will allow the in-beam γ-ray spectroscopy program to proceed with higher secondary-beam intensity, higher beam energy and better beam quality

    Dewetting of thin polymer films near the glass transition

    Full text link
    Dewetting of ultra-thin polymer films near the glass transition exhibits unexpected front morphologies [G. Reiter, Phys. Rev. Lett., 87, 186101 (2001)]. We present here the first theoretical attempt to understand these features, focusing on the shear-thinning behaviour of these films. We analyse the profile of the dewetting film, and characterize the time evolution of the dry region radius, Rd(t)R_{d}(t), and of the rim height, hm(t)h_{m}(t). After a transient time depending on the initial thickness, hm(t)h_{m}(t) grows like t\sqrt{t} while Rd(t)R_{d}(t) increases like exp(t)\exp{(\sqrt{t})}. Different regimes of growth are expected, depending on the initial film thickness and experimental time range.Comment: 4 pages, 5 figures Revised version, published in Physical Review Letters: F. Saulnier, E. Raphael and P.-G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002

    Dissipative production of a maximally entangled steady state

    Full text link
    Entangled states are a key resource in fundamental quantum physics, quantum cryp-tography, and quantum computation [1].To date, controlled unitary interactions applied to a quantum system, so-called "quantum gates", have been the most widely used method to deterministically create entanglement [2]. These processes require high-fidelity state preparation as well as minimizing the decoherence that inevitably arises from coupling between the system and the environment and imperfect control of the system parameters. Here, on the contrary, we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion qubits independent of their initial state. While previous works along this line involved the application of sequences of multiple time-dependent gates [3] or generated entanglement of atomic ensembles dissipatively but relied on a measurement record for steady-state entanglement [4], we implement the process in a continuous time-independent fashion, analogous to optical pumping of atomic states. By continuously driving the system towards steady-state, the entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation, and dissipative phase transitions [5-7]. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation [8].Comment: 25 pages, 5 figure

    General and specific utility measures for synthetic data

    Get PDF
    Data holders can produce synthetic versions of datasets when concerns about potential disclosure restrict the availability of the original records. This paper is concerned with methods to judge whether such synthetic data have a distribution that is comparable to that of the original data, what we will term general utility. We consider how general utility compares with specific utility, the similarity of results of analyses from the synthetic data and the original data. We adapt a previous general measure of data utility, the propensity score mean-squared-error (pMSE), to the specific case of synthetic data and derive its distribution for the case when the correct synthesis model is used to create the synthetic data. Our asymptotic results are confirmed by a simulation study. We also consider two specific utility measures, confidence interval overlap and standardized difference in summary statistics, which we compare with the general utility results. We present two examples examining this comparison of general and specific utility to real data syntheses and make recommendations for their use for evaluating synthetic data
    corecore